當前位置:首頁>文秘知識>最新初中數學函數的知識總結 初中必考數學知識點總結(精選18篇)

最新初中數學函數的知識總結 初中必考數學知識點總結(精選18篇)

時間:2023-10-16 09:26:40 作者:曼珠

總結能夠幫助我們更好地應用所學知識解決實際問題。以下是小編為大家整理的知識點總結范文,希望對大家的學習和記憶有所幫助。

初中數學函數的知識總結篇一

有一個角是直角的平行四邊形叫做矩形。

2、矩形的性質

(1)具有平行四邊形的一切性質;

(2)矩形的四個角都是直角;

(3)矩形的對角線相等;

(4)矩形是軸對稱圖形。

3、矩形的判定

(1)有一個角是直角的平行四邊形是矩形;

(2)對角線相等的平行四邊形是矩形。

(3)有三個角是直角的.四邊形是矩形。

(4)定理:經過證明,在同一平面內,任意兩角是直角,任意一組對邊相等的四邊形是矩形。

(5)對角線相等且互相平分的四邊形是矩形。

4、矩形的面積

s=長×寬=ab

5、矩形的周長

c=2(長+寬)=2(a+b)

初中數學函數的知識總結篇二

1、單項式相乘,它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數作為積的一個因式。

2、單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

3、多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。

2平方差公式

兩數和與這兩數差的積,等于它們的平方差

3完全平方公式

兩數和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,

4二元一次方程組

1、方程中含有未知數,并且未知數的指數(或未知項的次數)都是1,像這樣的方程叫做二元一次方程。

2、把兩個含有相同未知數二元一次方程合在一起,就組成了一個二元一次方程組。

3、使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。

4、二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解(二元一次方程組的解可能會出現在選擇題中驗根問題)。

5、消元:將未知數的個數由多化一,最終解一元一次方程然后反代解決二元三元、逐一解決的想法,叫做消元思想。

初中數學函數的知識總結篇三

1.充分體現由特殊到一般,由一般到特殊的思維過程,經歷探索數量關系和變化規律的過程,滲透辯證唯物主義思想。

2.知識呈現過程盡量做到與學生已有生活經驗密切聯系,如皮球的彈跳高度,傳數游戲等,發展學生應用數學的意識和能力。

3.讓知識的發生、發展過程得以充分暴露,重視基本知識和基本技能的學習。

4.注意發揮例題和習題的教育功能。加強學科間的縱向聯系并注意與其他學科的橫向聯系,擴充學生的知識面,注意適當插入一些開放題,培養發散思維,適時滲透美育和德育教育。

知識要點:

整式的有關概念

(1)單項式:表示數與字母的乘積的代數式,叫做單項式,單獨的一個數或一個字母也是單項式,如、2πr、a,0……都是單項式。

(2)多項式:幾個單項式的和叫做多項式。

初中數學函數的知識總結篇四

相似三角形的概念、相似比的意義、畫圖形的放大和縮小。

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義。

相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用。

三角形的重心

考核要求:知道重心的定義并初步應用。

向量的有關概念

向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

解直角三角形及其應用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:

(1)通過實例認識變量、自變量、因變量,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

用待定系數法求二次函數的解析式

考核要求:

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

畫二次函數的圖像

考核要求:

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

二次函數的圖像及其基本性質

考核要求:

(2)會用配方法求二次函數的頂點坐標,并說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷。

圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

畫正三、四、六邊形。

考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

確定事件和隨機事件

考核要求:

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

事件發生的可能性大小,事件的概率

考核要求:

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

注意:

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

等可能試驗中事件的概率問題及概率計算

考核要求:

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

數據整理與統計圖表

考核要求:

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,并能通過圖表獲取有關信息。

初中數學函數的知識總結篇五

顧名思義。中位線就是圖形的中點的連線,包括三角形中位線和梯形中位線兩種。

中位線概念

(1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

(2)梯形中位線定義:連結梯形兩腰中點的線段叫做梯形的中位線。

注意:

(1)要把三角形的中位線與三角形的中線區分開。三角形中線是連結一頂點和它對邊的中點,而三角形中位線是連結三角形兩邊中點的線段。

(2)梯形的中位線是連結兩腰中點的線段而不是連結兩底中點的線段。

(3)兩個中位線定義間的聯系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

初中數學函數的知識總結篇六

1、三位數乘兩位數的方法:

先用一個因數的個位與另一個因數的每一位依次相乘,再用這個因數的十位與另一個因數的每一位依次相乘,乘到哪一位,積的個位就與哪一位對齊,哪一位滿十就向前一位進“1”,再把兩次相乘的積加起來。末尾有0時,把兩個因數0前面的數對齊,并將它們相乘,再在積的后面添上沒有參加運算的幾個0。中間有0時,這個0要參加運算。

2、因數和積的變化規律:一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。

3、因數是兩、三位數的乘法的估算方法:先把兩個因數的位后面的尾數省略,求出近似數,再把這兩個近似數相乘。

【補充知識點】

2、利用豎式計算三位數乘兩位數。注意,第二步的乘積末尾寫在十位上。

3、因數中間或末尾有0的三位數乘兩位數。

中間有0也要和因數分別相乘;末尾有0的,要將兩個因數0前面數的末位對齊,用0前面的數相乘,乘完之后在落0,有幾個0落幾個0。

實際生活中的估算:

生活中的實際問題(估算是往大估還是往小估?)

a、350名同學要外出參觀,有7輛車,每輛車有56個座位,估一估要幾輛車?

b、橋在重量3噸,貨物共6箱,每箱重285千克,車重986千克,這輛車能過去嗎?

【知識點】

估算的方法及注意事項:要將因數估成整十、整百或整千的數。估算時注意,要符合實際,接近精確值。

人教版四年級上冊數學《角的度量》知識點

1.直線、射線、角

直線:向兩端無限延伸的線,直線無端點。

射線:能像一個方向延伸的線,射線有一個端點。

線段:不能延伸的線,線段有兩個端點。

角:

具有公共端點的兩條射線組成的圖形叫做角。

這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

2.直線、射線與線段的聯系和區別

1)直線和射線都可以無限延伸,因此無法量出長短。

2)線段可以量出長度。

3)線段有兩個端點,直線沒有端點,射線只有一個端點。

3.角的特征

角有一個頂點,兩條邊

4.角的大小比較:

初中數學函數的知識總結篇七

1同角或等角的余角相等

2過一點有且只有一條直線和已知直線垂直

3過兩點有且只有一條直線

4兩點之間線段最短

5同角或等角的補角相等

6直線外一點與直線上各點連接的所有線段中,垂線段最短

7平行公理經過直線外一點,有且只有一條直線與這條直線平行

8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

初中幾何公式:角

9同位角相等,兩直線平行

10內錯角相等,兩直線平行

11同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13兩直線平行,內錯角相等

14兩直線平行,同旁內角互補

初中幾何公式:三角形

15定理三角形兩邊的和大于第三邊

16推論三角形兩邊的差小于第三邊

17三角形內角和定理三角形三個內角的和等于180°

18推論1直角三角形的兩個銳角互余

19推論2三角形的一個外角等于和它不相鄰的兩個內角的和

20推論3三角形的一個外角大于任何一個和它不相鄰的內角

21全等三角形的對應邊、對應角相等

22邊角邊公理有兩邊和它們的夾角對應相等的兩個三角形全等

23角邊角公理有兩角和它們的夾邊對應相等的兩個三角形全等

24推論有兩角和其中一角的對邊對應相等的兩個三角形全等

25邊邊邊公理有三邊對應相等的兩個三角形全等

26斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等

27定理1在角的平分線上的點到這個角的兩邊的距離相等

28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29角的平分線是到角的兩邊距離相等的所有點的集合

初中幾何公式:等腰三角形

30等腰三角形的性質定理等腰三角形的兩個底角相等

31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

32等腰三角形的頂角平分線、底邊上的中線和高互相重合

33推論3等邊三角形的各角都相等,并且每一個角都等于60°

34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35推論1三個角都相等的三角形是等邊三角形

36推論2有一個角等于60°的等腰三角形是等邊三角形

37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

38直角三角形斜邊上的中線等于斜邊上的一半

39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42定理1關于某條直線對稱的兩個圖形是全等形

43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c

初中數學函數的知識總結篇八

1.如果把解題比做打仗,那么解題者的“兵器”就是數學基礎知識,“兵力”就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是“兵法”。

2.數學家存在的主要理由就是解決問題。因此,數學的真正的組成部分是問題和解答?!皢栴}是數學的心臟”。

3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對于學生而言,問題有三個特征:

(1)接受性:學生愿意解決并且具有解決它的知識基礎和能力基礎。

(2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。

(3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。

4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對于教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:

(1)問題解決是心理活動。面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。

(2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。

(3)問題解決是一個學習目的。“學習數學的主要目的在于問題解決”。因而,學習怎樣解決問題就成為學習數學的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數學的具體內容。

(4)問題解決是一種生存能力。重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學習生存的本領。

6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。第三個表現是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區里,“解題而不立法、作答而不立論”。

7.人的思維依賴于必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。豐富的知識并加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。

8.熟練掌握數學基礎知識的體系。對于中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。還應掌握中學數學競賽涉及的基礎理論。深刻理解數學概念、準確掌握數學定理、公式和法則。熟悉基本規則和常用的方法,不斷積累數學技巧。

9.數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現“相容”和“不容”的兩種可能。出現“相容”時,產生新結果,且被原概念吸收,并發展成新概念;當出現“不容”時,則產生了所謂的問題。這時,思維出現迂回,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。至此,也產生新的結果,也被原思維吸收。這就是一個思維活動的全過程。

10.解題能力,表現于發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。

初中數學函數的知識總結篇九

單項式和多項式統稱為整式。

單項式:

1)數與字母的乘積這樣的代數式叫做單項式。單獨的一個數或字母(可以是兩個數字或字母相乘)也是單項式。

2)單項式的系數:單項式中的數字因數及性質符號叫做單項式的系數。

3)單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

多項式:

1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項。一個多項式有幾項就叫做幾項式。

2)多項式的次數:多項式中,次數最高的項的次數,就是這個多項式的次數。

多項式的排列:

1).把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

2).把一個多項式按某一個字母的指數從小到大的'順序排列起來,叫做把多項式按這個字母升冪排列。

由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

初中數學函數的知識總結篇十

反法是間接明。這是一種方法,通過這種方法首先提出與的結論相反的設,然后,從這個設,通過正確的推理,導致矛盾,從而否定相反的設,從而肯定了正確性。原始。矛盾明可以分為矛盾的簡化荒謬明(結論的反面只有一種)和矛盾的窮舉明(結論的反面不止一種)。通過矛盾明的步驟一般分為:

(1)反設;

(2)減少;

(3)結論。

初中數學函數的知識總結篇十一

不知道大家有沒有過這樣的情況:在遇到一個難題的時候,絞盡腦汁的去想解題方法,仍舊解不出來,參照答案之后,才發現,原來是某某定理理解的不到位,某某公式記得不全面。

將筆記上的重點知識標記出,進行一下系統的記憶之后,可以對一個的找一些專題進行一下系統的訓練,最好多找一些綜合題,因為綜合題考查的知識點較多,更能夠發現自己的薄弱項。從而進行強化,讓自己無懈可擊。

同學們可以跟自己的同桌或者同學進行合作,互相出題為難對方,一個會出題的人必定會解題,如果題出的非常嚴謹,證明你已經升華了。

鍛煉出題的能力也可以培養自己對知識、對考試的不同認識,讓自己站在出題老師的角度上去思考一道題的解題方法與技巧,視野會更加的開闊。

初中數學函數的知識總結篇十二

所謂的配方法公式是就是把一個解析式利用恒等變形的方法,將一些術語匹配成一個或幾個多項式正整數冪的形式。通過公式求解數學問題的方法稱為匹配方法。其中,常用的是匹配成完全扁平的方式。匹配方法是數學中身份轉換的重要方法。它廣泛應用于因子分解,簡化,方程解,方程和不等式明,函數極值和解析表達式。

初中數學函數的知識總結篇十三

單項式和多項式統稱為整式。

1. 單項式:1)數與字母的乘積這樣的代數式叫做單項式。單獨的一個數或字母(可以是兩個數字或字母相乘)也是單項式。

2) 單項式的系數:單項式中的 數字因數及性質符號叫做單項式的系數。

3) 單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項。一個多項式有幾項就叫做幾項式。

2)多項式的次數:多項式中,次數最高的項的次數,就是這個多項式的次數。

3. 多項式的排列:

1).把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

2).把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

初中數學函數的知識總結篇十四

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

注意:(1)單個數字與字母也是代數式;(2)代數式與公式、等式的區別是代數式中不含等號,而公式和等式中都含有等號;(3)代數式可按運算關系和運算結果兩種情況理解。

1.單項式:數與字母的積所表示的代數式叫做單項式,單項式中的數字因數叫做單項式的系數;單項式中所有字母的指數的和叫做單項式的次數。特別地,單獨一個數或者一個字母也是單項式。

2.多項式:幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項;在多項式里,次數最高項的次數就是這個多項式的次數。

把一個多項式按某一個字母的指數從小到大(或從大到?。┑捻樞蚺帕衅饋恚凶霭讯囗検桨催@個字母升(降)冪排列。

3.帶分數與字母相乘時,應先把帶分數化成假分數后再與字母相乘;

4.在代數式中出現除法運算時,按分數的寫法來寫;

5.在一些實際問題中,有時表示數量的代數式有單位名稱,如果代數式是積或商的形式,則單位直接寫在式子后面;如果代數式是和或差的形式,則必須先把代數式用括號括起來,再將單位名稱寫在式子的后面,如2a米,(2a-b)kg。

單項式的系數和次數,多項式的項數和次數。

1.單項式的系數:單項式中的數字因數叫做單項式的系數。

注意:(1)單項式的系數包括它前面的符號;(2)若單項式的系數是"1”或-1“時,"1"通常省略不寫,但“-”號不能省略。

2.單項式的次數:單項式中所有字母的指數和叫做單項式的次數。

注意:(1)單項式的次數是它含有的所有字母的指數和,只與字母的指數有關,與其系數無關;(2)單項式中字母的指數為1時,1通常省略不寫,在確定單項式的次數時,一定不要忘記被省略的1。

3.多項式的次數:多項式中次數最高的項的次數就是多項式的次數.

4.多項式的項數:在多項式中,每個單項式都叫做多項式的項,其中不含字母的項稱為常數項。一個多項式有幾項,就叫幾項式,它的項數就是幾。多項式的項數實質是“和”中單項式的個數。

用含有數、字母和運算符號的式子把問題中的數量表示出來就是列代數式。

正確列出代數式,要掌握以下幾點:

(1)列代數式的關鍵是理解和找出問題中的數量關系;

(2)要掌握一些常見的數量關系如行程問題、工程問題、濃度問題、數字問題等;

(3)要善于抓住問題中的關鍵詞語,如和、差、積、商、大、小、幾倍、平方、多、少等。

一般地,用數值代替代數式中的字母,按照代數式中指明的運算計算的結果叫做代數式求值。

代數式求值的三種方法:1.直接代入求值;2.化簡代入求值;3.整體代入求值。

初中數學函數的知識總結篇十五

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其余字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對于只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合并同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數等于兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。

4、運算結果中有同類項的要合并同類項。

5、對于含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

初中數學函數的知識總結篇十六

(1)正數:比0大的數叫做正數;

負數:比0小的數叫做負數;

0既不是正數,也不是負數。

(2)正數和負數表示相反意義的量。

2、有理數的概念及分類

3、有關數軸

(1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。

(2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。

(3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。

(2)相反數:符號不同、絕對值相等的兩個數互為相反數。

若a、b互為相反數,則a+b=0;

相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

(3)絕對值最小的數是0;絕對值是本身的數是非負數。

4、任何數的絕對值是非負數。

最小的正整數是1,最大的負整數是-1。

5、利用絕對值比較大小

兩個正數比較:絕對值大的那個數大;

兩個負數比較:先算出它們的絕對值,絕對值大的反而小。

6、有理數加法

加法的結合律:(a+b)+c=a+(b+c)

7、有理數減法:減去一個數,等于加上這個數的相反數。

8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.

例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

9、有理數的乘法

兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

第一步:確定積的符號 第二步:絕對值相乘

10、乘積的符號的確定

當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。

11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。

正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)

倒數是本身的只有1和-1。

初中數學函數的知識總結篇十七

我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什么面目出現,我們都能夠應用自如)。

(2)總結相似的類型題目

這個工作,不僅僅是老師的事,我們的同學要學會自己做。當你會總結題目,對所做的題目會分類,知道自己能夠解決哪些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時,你才真正的掌握了這門學科的竅門,才能真正的做到“任它千變萬化,我自巋然不動”。這個問題如果解決不好,在進入初二、初三以后,同學們會發現,有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重復的工作,很多相似的題目反復做,需要解決的問題卻不能專心攻克。久而久之,不會的題目還是不會,會做的題目也因為缺乏對數學的整體把握,弄的一團糟。

我們的建議是:“總結歸納”是將題目越做越少的最好辦法。

(3)收集自己的典型錯誤和不會的題目

同學們最難面對的,就是自己的錯誤和困難。但這恰恰又是最需要解決的問題。同學們做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然后彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現實情況是,同學們只追求做題的數量,草草的應付作業了事,而不追求解決出現的問題,更談不上收集錯誤。我們之所以建議大家收集自己的典型錯誤和不會的題目,是因為,一旦你做了這件事,你就會發現,過去你認為自己有很多的小毛病,現在發現原來就是這一個反復在出現;過去你認為自己有很多問題都不懂,現在發現原來就這幾個關鍵點沒有解決。

我們的建議是:做題就像挖金礦,每一道錯題都是一塊金礦,只有發掘、冶煉,才會有收獲。

(4)就不懂的問題,積極提問、討論

發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。“閉門造車”只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到后面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣。直到無法趕上步伐。

討論是一種非常好的學習方法。一個比較難的題目,經過與同學討論,你可能就會獲得很好的靈感,從對方那里學到好的方法和技巧。需要注意的是,討論的對象最好是與自己水平相當的同學,這樣有利于大家相互學習。

我們的建議是:“勤學”是基礎,“好問”是關鍵。

(5)注重實戰(考試)經驗的培養

考試本身就是一門學問。有些同學平時成績很好,上課老師一提問,什么都會。課下做題也都會。可一到考試,成績就不理想。出現這種情況,有兩個主要原因:一是,考試心態不不好,容易緊張;二是,考試時間緊,總是不能在規定的時間內完成。心態不好,一方面要自己注意調整,但同時也需要經歷大型考試來鍛煉。每次考試,大家都要尋找一種適合自己的調整方法,久而久之,逐步適應考試節奏。做題速度慢的問題,需要同學們在平時的做題中解決。自己平時做作業可以給自己限定時間,逐步提高效率。另外,在實際考試中,也要考慮每部分的完成時間,避免出現不必要的慌亂。

我們的建議是:把“做作業”當成考試,把“考試”當成做作業。

初中數學函數的知識總結篇十八

一.知識框架

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查.

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.

3.總體:要考察的全體對象稱為總體.

4.個體:組成總體的每一個考察對象稱為個體.

5.樣本:被抽取的所有個體組成一個樣本.

6.樣本容量:樣本中個體的數目稱為樣本容量.

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.

8.頻率:頻數與數據總數的比為頻率.

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.

數學學習方法技巧

一該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。

因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

1、“方程”的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。

物理中的能量守恒,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。

所謂的“方程”思想就是對于數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。

相關范文推薦

猜你喜歡

国产精品嫩草影院奶水